Viscoelastic and mechanical behavior of recombinant protein elastomers.
نویسندگان
چکیده
Recombinant DNA synthesis was employed to produce elastin-mimetic protein triblock copolymers containing chemically distinct midblocks. These materials displayed a broad range of mechanical and viscoelastic responses ranging from plastic to elastic when examined as hydrated gels and films. These properties could be related in a predictable fashion to polymer block size and structure. While these materials could be easily processed into films and gels, electrospinning proved a feasible strategy for creating protein fibers. All told, the range of properties exhibited by this new class of protein triblock copolymer in combination with their easy processability suggests potential utility in a variety of soft prosthetic and tissue engineering applications.
منابع مشابه
Damping Behavior of the Phenolic Based Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)
Attempts have been made for the first time to produce a friction material with thermal sensitive modulus by the inclusion of combined plastic/rubber properties of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation for the purpose of increasing the damping behavior. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and elastic m...
متن کاملMechanochemically Responsive Viscoelastic Elastomers
Mechanochemically responsive (MCR) polymers have been designed to possess unconventional properties such as changing colors, self-healing, and releasing catalysts under deformation. These properties of MCR polymers stem from a class of molecules, referred to as mechanophores, whose chemical reactions can be controlled by mechanical forces. Although extensive studies have been devoted to the syn...
متن کاملViscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach
A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...
متن کاملViscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach
A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between ...
متن کاملEvaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis.
The paper presents a combined experimental and theoretical approach to the understanding of hysteresis and adhesion contributions to rubber friction on dry and lubricated rough surfaces. Based on a proper analysis of the temperature- and frequency-dependent behaviors of nonlinear viscoelastic materials such as filler reinforced elastomer materials, master curves for the viscoelastic moduli are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 26 23 شماره
صفحات -
تاریخ انتشار 2005